Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 55: e11542, 2022. graf
Article in English | LILACS-Express | LILACS | ID: biblio-1360234

ABSTRACT

The periaqueductal gray matter (PAG) is an essential structure involved in the elaboration of defensive responses, such as when facing predators and conspecific aggressors. Using a prey vs predator paradigm, we aimed to evaluate the PAG activation pattern evoked by unconditioned and conditioned fear situations. Adult male guinea pigs were confronted either by a Boa constrictor constrictor wild snake or by the aversive experimental context. After the behavioral test, the rodents were euthanized and the brain prepared for immunohistochemistry for Fos protein identification in different PAG columns. Although Fos-protein-labeled neurons were found in different PAG columns after both unconditioned and conditioned fear situations at the caudal level of the PAG, we found greater activation of the lateral column compared to the ventrolateral and dorsomedial columns after predator exposure. Moreover, the lateral column of the PAG showed higher Fos-labeled cells at the caudal level compared to the same area at the rostral level. The present results suggested that there are different activation patterns of PAG columns during unconditioned and conditioned fear in guinea pigs. It is possible to hypothesize that the recruitment of specific PAG columns depended on the nature of the threatening stimulus.

2.
Braz. j. med. biol. res ; 53(5): e9255, 2020. graf
Article in English | LILACS | ID: biblio-1098115

ABSTRACT

The neurochemical mechanisms underlying neuropathic pain (NP) are related to peripheral and central sensitization caused by the release of inflammatory mediators in the peripheral damaged tissue and ectopic discharges from the injured nerve, leading to a hyperexcitable state of spinal dorsal horn neurons. The aim of this work was to clarify the role played by cyclooxygenase (COX) in the lesioned peripheral nerve in the development and maintenance of NP by evaluating at which moment the non-steroidal anti-inflammatory drug indomethacin, a non-selective COX inhibitor, attenuated mechanical allodynia after placing one loose ligature around the nervus ischiadicus, an adaptation of Bennett and Xie's model in rodents. NP was induced in male Wistar rats by subjecting them to chronic constriction injury (CCI) of the nervus ischiadicus, placing one loose ligature around the peripheral nerve, and a sham surgery (without CCI) was used as control. Indomethacin (2 mg/kg) or vehicle was intraperitoneally and acutely administered in each group of rats and at different time windows (1, 2, 4, 7, 14, 21, and 28 days) after the CCI or sham surgical procedures, followed by von Frey's test for 30 min. The data showed that indomethacin decreased the mechanical allodynia threshold of rats on the first, second, and fourth days after CCI (P<0.05). These findings suggested that inflammatory mechanisms are involved in the induction of NP and that COX-1 and COX-2 are involved in the induction but not in the maintenance of NP.


Subject(s)
Animals , Male , Rats , Sciatic Nerve/injuries , Pain Measurement , Indomethacin/administration & dosage , Neuralgia/drug therapy , Rats, Wistar , Rats, Sprague-Dawley , Pain Threshold , Constriction , Disease Models, Animal , Neuralgia/etiology
3.
Braz. j. med. biol. res ; 45(4): 328-336, Apr. 2012. ilus
Article in English | LILACS | ID: lil-622754

ABSTRACT

The hypothalamus is a forebrain structure critically involved in the organization of defensive responses to aversive stimuli. Gamma-aminobutyric acid (GABA)ergic dysfunction in dorsomedial and posterior hypothalamic nuclei is implicated in the origin of panic-like defensive behavior, as well as in pain modulation. The present study was conducted to test the difference between these two hypothalamic nuclei regarding defensive and antinociceptive mechanisms. Thus, the GABA A antagonist bicuculline (40 ng/0.2 µL) or saline (0.9% NaCl) was microinjected into the dorsomedial or posterior hypothalamus in independent groups. Innate fear-induced responses characterized by defensive attention, defensive immobility and elaborate escape behavior were evoked by hypothalamic blockade of GABA A receptors. Fear-induced defensive behavior organized by the posterior hypothalamus was more intense than that organized by dorsomedial hypothalamic nuclei. Escape behavior elicited by GABA A receptor blockade in both the dorsomedial and posterior hypothalamus was followed by an increase in nociceptive threshold. Interestingly, there was no difference in the intensity or in the duration of fear-induced antinociception shown by each hypothalamic division presently investigated. The present study showed that GABAergic dysfunction in nuclei of both the dorsomedial and posterior hypothalamus elicit panic attack-like defensive responses followed by fear-induced antinociception, although the innate fear-induced behavior originates differently in the posterior hypothalamus in comparison to the activity of medial hypothalamic subdivisions.


Subject(s)
Animals , Male , Rats , Dorsomedial Hypothalamic Nucleus/physiology , Escape Reaction/physiology , Hypothalamus, Posterior/physiology , Panic Disorder/metabolism , Bicuculline/pharmacology , Dorsomedial Hypothalamic Nucleus/drug effects , GABA-A Receptor Antagonists/pharmacology , Hypothalamus, Posterior/drug effects , Maze Learning , Pain Threshold/drug effects , Panic Disorder/etiology
4.
Braz. j. med. biol. res ; 30(8): 981-4, Aug. 1997. graf
Article in English | LILACS | ID: lil-197255

ABSTRACT

The intake of saccharin solutions for relatively long periods of time causes analgesia in rats, as measured in the hot-plate test, an experimental procedure involving supraspinal components. In order to investigate the effects of sweet substance intake on pain modulation using a different model, male albino Wistar rats weighing 180-200 g received either tap water or sucrose solutions (250 g/I) for 1 day or 14 days as their only source of liquid. Each rat consumed an average of 15.6 g sucrose/day. Their tail withdrawal latencies in the tail-flick test (probably a spinal reflex) were measured immediately before and after this treatment. An analgesia index was calculated from the withdrawal latencies before and after treatment. The indexes (mean + SEM,N = 12) for the groups receiving tap water for 1 day or 14 days, and sucrose solution for 1 day or 14 days were 0.09 + 0.04, 0.10 + 0.05, 0.15 + 0.08 and 0.49 + 0.07, respectively. One-way ANOVA indicated a significant difference (F(3,47) = 9.521, P<0.001) and the Tukey multiple comparison test (P<0.05) showed that the analgesia index of the 14-day sucrose-treated animals differed from all other groups. Naloxone-treated rats (N = 7) receiving sucrose exhibited an analgesia index of 0.20 + 0.10 while rats receiving only sucrose (n = 7) had an index of 0.68 + 0.11 (t=0.254, 10 degreed of freedom, P<0.03). This result indicates that the analgesic effect of sucrose depens on the time during which the solution is consumed and extends the analgesic effects of sweet substance intake, such as saccharin, to a model other than the hot-plate test, with similar results. Endogenous opioids may be involved in the central regulation of the sweet substance-produced analgesia.


Subject(s)
Rats , Animals , Male , Analgesia , Opioid Peptides/drug effects , Sucrose/pharmacology , Naloxone/pharmacology , Pain Measurement/drug effects , Rats, Wistar
5.
Braz. j. med. biol. res ; 22(1): 111-4, 1989. ilus
Article in English | LILACS | ID: lil-67511

ABSTRACT

Eletrical stimulation or microinjection of GABA antagonists into the dorsal periaqueductal gray (DPAG) produces escape behavior. In order to determine whether the nigrocollicular gabaergic fibers exert some control over this behavior, rats bearing kainic acid lesion of the substantia nigra pars reticulata were submitted to microinjections of bicuculline or electrical stimulation of the DPAG at the escape threshold. Rats thus treated exhibited a significant decrease in the escape threshold while bicuculline increased the expression of flight behavior. These results suggest an inhibitory control of gabaergic fibers from the substantia nigra pars reticulata on aversive behavior induced by DPAG stimulation


Subject(s)
Rats , Animals , Male , Bicuculline/pharmacology , gamma-Aminobutyric Acid/antagonists & inhibitors , Runaway Behavior/drug effects , Substantia Nigra , Electric Stimulation
6.
Braz. j. med. biol. res ; 21(5): 1027-31, 1988. ilus
Article in English | LILACS | ID: lil-63606

ABSTRACT

Electrical stimulation of the dorsal periaqueductal gray (DPAG) elicits autonomic responses similar to those following peripheral pain stimulation. The present study analyzes the effects of morphine and midazolan applied to the same DPAG sites on the autonomic responses induced by both types of stimulation. Both drugs attenuated the increase in heart rate and blood pressure induced by DPAG stimulation while attenuating only the increase in heart rat induced by pain stimulation. These results suggest that the neural substrates of the autonomic expression of the DPAG and pain stimulation are different although they may partially overlap


Subject(s)
Rats , Animals , Male , Fear , Midazolam/pharmacology , Morphine/pharmacology , Pain , Periaqueductal Gray
SELECTION OF CITATIONS
SEARCH DETAIL